Journal of Catalysis 279 (2011) 246-256

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Microcalorimetric adsorption studies of highly loaded Co–ZrO₂/SiO₂ catalysts for Fischer–Tropsch synthesis

Liang Chen, Jianyi Shen*

Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

ARTICLE INFO

Article history: Received 30 August 2010 Revised 12 January 2011 Accepted 15 January 2011 Available online 3 March 2011

Keywords: Highly loaded Co/SiO₂ catalysts ZrO₂ promoter Fischer–Tropsch synthesis Microcalorimetric adsorption Sequential adsorption studies

ABSTRACT

Highly loaded Co/SiO₂ catalysts were prepared by a co-precipitation technique with an *n*-butanol drying process for Fischer–Tropsch synthesis (FTS). With the increase in cobalt loading from 20% to 80%, the FTS activity of the catalysts increased greatly. The addition of ZrO_2 improved the dispersion of cobalt and promoted the adsorption of H₂ and CO on cobalt. The preadsorbed H atoms significantly enhanced the adsorption of CO and C₂H₄, especially on cobalt promoted by ZrO_2 . While the adsorption of C₂H₄ onto clean cobalt led to the formation of ethylidyne, π - and di- σ -bonded C₂H₄ might form on the CO-preadsorbed 80%Co/SiO₂ and 80%Co–8%ZrO₂/SiO₂, respectively. The presence of ZrO₂ strengthened the bonding of molecularly adsorbed ethylene and increased its uptake on CO-preadsorbed cobalt, which might be why the 80%Co–8%ZrO₂/SiO₂ exhibited such high activity for the hydrogenation of CO to heavy hydrocarbons.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The reactions of Fischer-Tropsch synthesis (FTS) have been widely studied, because it provides a feasible route for the synthesis of clean fuels from syngas without any sulfur and aromatic compounds [1-3]. Co-based catalysts were found to exhibit high activity for producing linear heavy hydrocarbons with low activity for the water-gas shift reaction [4-6]. Previous studies [2,7-9] showed that the reducibility and dispersion of supported cobalt might be the important factors determining activity and selectivity to heavy hydrocarbons, and activity and C₅⁺ selectivity were related to the number of metallic cobalt particles (larger than 7-8 nm) on the surface. Supported cobalt catalysts were usually prepared by the incipient wetness impregnation method [6,10–13] with porous materials such as alumina, silica, and active carbons as supports. When the loading of cobalt was low (e.g., lower than 30%), precursors of cobalt were highly dispersed on the supports. However, the strong interactions between the metal and supports led to the formation of compounds such as cobalt silicates and cobalt aluminates that were difficult to reduce [2,14-16], resulting in FTS catalysts with low activity, high selectivity to methane, and low selectivity to C_5^+ .

Two methods are usually used to improve the activity of cobalt catalysts for FTS. One is to increase the loading of cobalt [10,17,18], so that more cobalt can be reduced and hopefully more active sites

may be created. Thus, sol-gel and co-precipitation methods combined with a supercritical drying technique are usually used to prepare cobalt catalysts with high surface area and high loading and dispersion of supported cobalt. Another way is to add promoters to cobalt catalysts. Promoters such as Zr, La, Mn, Ce, and V were added and found to improve the reducibility and dispersion of supported Co [10,11,14,19–21]. In addition, some promoters retarded the deactivation and coke deposition of cobalt catalysts for FTS.

In this work, highly loaded Co/SiO₂ catalysts were prepared by the co-precipitation method with an *n*-butanol drying process so that the surface area of catalysts, as well as the reducibility and dispersion of supported cobalt, was significantly enhanced [22,23]. Accordingly, the catalysts were found to be highly active and selective to C_5^+ for the FTS. In addition, ZrO₂ was added as a promoter. Techniques such as X-ray diffraction (XRD), transmission electron microscopy (TEM), and microcalorimetric adsorption were used to characterize the catalysts, and efforts were made to correlate the FTS reactivity to the surface properties of catalysts.

The α -olefins and their adsorbed forms are believed to be important for carbon chain propagation during the FTS. It was reported that α -olefins such as ethylene could act as chain initiators and their readsorption would lead to further chain growth [1,24– 27]. Girardon et al. [6] found that the cobalt catalysts that adsorbed more propylene exhibited higher activity and selectivity to C⁺₅ in FTS. Ethylene is a simple olefin. The uptake of ethylene may reflect the chain propagation probability of a FTS catalyst. In addition, different reactants, intermediates, and products may adsorb simultaneously onto the cobalt surface and affect the subsequent adsorption and surface reactions. Although complete description

^{*} Corresponding author. Fax: +86 25 83594305. *E-mail address:* jyshen@nju.edu.cn (J. Shen).

^{0021-9517/\$ -} see front matter \odot 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jcat.2011.01.014

of such mutual interactions is a tremendous task, the interactions of simple molecules such as H₂, CO, and ethylene on the surfaces of FTS catalysts may provide useful information about the surface properties that could be related to the initial reactivity of FTS catalysts.

2. Experimental

2.1. Preparation of catalysts

Co/SiO₂ catalysts containing about 20, 40, 60, and 80 wt.% cobalt were prepared by the co-precipitation method. Co-ZrO₂/SiO₂ catalysts with different amounts of ZrO₂ (2-12 wt.%) were prepared similarly. Specifically, desired amounts of metal nitrates (Co(NO₃)₂·6H₂O and/or (Zr(NO₃)₄·5H₂O, both in AR grade) were dissolved in 100 ml distilled water to form a solution (I). Another solution (II) was obtained by dissolving desired amounts of Na₂CO₃ (AR) and Na₂SiO₃·9H₂O (AR) in 100 ml distilled water. The two solutions were simultaneously added dropwise into a beaker containing 250 ml distilled water at 353 K under vigorous stirring. The precipitates formed were filtered and washed thoroughly with water until the pH of the filtrate was 7. *n*-Butanol (about 200 ml, AR) was then added into a precipitate and heated at 353 K overnight, while water and *n*-butanol were evaporated. The powder samples were further dried in an oven at 393 K for 12 h. Then, they were pressed, crashed, and sieved to 20 and 40 meshes for further use.

2.2. Characterization of catalysts

The nitrogen adsorption/desorption isotherms were determined at 77 K using a Micromeritics Gemini V 2380 autosorption analyzer. Catalysts were usually outgassed in flowing nitrogen at 573 K for 3 h prior to the measurements. The specific surface areas were calculated using the Brunauer–Emmett–Teller (BET) method, and the pore size distributions were obtained according to the desorption branches by the Barrett–Joyner–Halenda (BJH) method.

XRD patterns were collected in ambient atmosphere by an X-ray diffractometer (Shimadzu XRD-6000) with Cu K α radiation (λ = 1.5408 Å) generated at 40 kV and 30 mA. Diffraction intensities were recorded from 10° to 80° at a rate of 2.00°/min with a sampling width of 0.02°.

Temperature-programmed reduction measurements (TPR) were performed using a quartz U-tube reactor loaded with about 50 mg of a dried sample in 5.03% H_2/N_2 (V/V) at a flow rate of 40 ml/min. The hydrogen consumption was monitored by a thermal conductivity detector (TCD). The reducing gas first passed through the reference arm of the TCD before entering the reactor. The exiting gas passed through a trap filled with soda lime to remove water and possibly CO₂ and then reached the second arm of the TCD.

Microcalorimetric adsorption measurements were performed using a Tian–Calvet Type C-80 microcalorimeter (Setaram, France), which was connected to a glass vacuum-dosing system, equipped with a Baratron capacitance manometer (USA) for pressure measurement and gas handling. About 0.1 g of catalyst was loaded, reduced at 773 K for 2.5 h in flowing H₂, and then evacuated at 773 K for 1 h prior to measurement. Then, the microcalorimetric adsorption of CO, H₂, C₂H₄, NH₃, and CO₂ was carried out. In addition, two different probe gases were adsorbed successively onto the reduced 80%Co/SiO₂ and 80%Co–8%ZrO₂/SiO₂. For example, the microcalorimetric adsorption of CO was first performed at 303 K on the reduced 80%Co/SiO₂, followed by evacuation at 303 K for 3 h to remove the weakly adsorbed CO molecules. Then, another probe molecule such as ethylene was dosed onto the catalyst at 303 K to measure the heat of adsorption of ethylene on the catalyst with CO preadsorbed, and vice versa. In this way, pairs of gases such as H_2/CO , CO/ethylene, and H_2 /ethylene were studied by the microcalorimetric adsorption. The catalysts were usually evacuated at 303 K for 3 h before the second probe gas was adsorbed. The situation of adsorption of CO followed by the adsorption of ethylene on $80\%Co/SiO_2$ was expressed as $C_2H_4/CO/80\%Co/SiO_2$. In contrast, the adsorption of ethylene followed by CO on $80\%Co/SiO_2$ could be expressed as $CO/C_2H_4/80\%Co/SiO_2$.

The infrared (IR) spectra were recorded on a Bruker VERTEX 70 spectrometer with an MCT detector (in the range of 1000–4000 cm⁻¹). A catalyst (about 20 mg) was pressed into a self-supporting pellet and loaded into an in situ IR cell. It was reduced in H₂ at 773 K for 2.5 h, followed by evacuation at 773 K for 1 h. After cooled down to 303 K, certain amount of CO and C₂H₄ (about 4 kPa) was introduced subsequently into the IR cell and kept for 1 h. Then, the IR cell was evacuated for 1 h to remove gaseous molecules. The IR spectra were collected before and after the introduction of adsorbates. For the adsorption of C₂H₄ on the CO-preadsorbed samples, CO was adsorbed and evacuated at 303 K and an IR spectrum was then collected as background before the introduction of C₂H₄.

The adsorption of H_2 and O_2 was carried out in a homemade volumetric apparatus. The catalysts were reduced in H_2 at 773 K for 4 h and evacuated at 773 K for 1 h before the measurements. The adsorption of H_2 was performed at 423 K [28,29]. After the adsorption of H_2 , the sample was heated to 673 K at a rate of 10 K/min and evacuated at the temperature for 1 h. The adsorption of O_2 was then performed at 673 K. The uptake of H_2 and O_2 was obtained by extrapolating the coverage of corresponding isotherms to P = 0. The degree of reduction (reducibility), dispersion, and average particle size of supported cobalt were calculated based on the amounts of H_2 and O_2 adsorbed and the loading of cobalt. The detailed calculation formulas could be found in the literature [30].

2.3. Catalytic tests

Reactions of FTS were carried out in a fixed bed reactor. The reactor consisted of a stainless steel tube with an internal diameter of 10 mm heated by an electronic oven. Syngas was regulated with a mass flow controller. The reaction pressure was maintained by a back-pressure regulator. Typically, 3 g of catalyst mixed with quartz sands was loaded into the reactor. Prior to the reaction, the catalyst was reduced at 773 K in flowing H₂ (30 ml/min) for 4 h under atmospheric pressure. After the temperature was lowered to 373 K, syngas (H₂:CO:N₂ = 64:32:4 mol ratio) was introduced, and the reactor was heated to the desired reaction temperatures. N₂ was added as an internal standard for the analysis of CO and products by a gas chromatograph (GC).

A hot trap at 423 K and a cold trap at 273 K were used to collect wax and liquid products, respectively. The FTS reactions reached steady state on the catalysts after 12 h, and the effluent gases from the traps were analyzed on line by a GC. A TDX-01 column was used with a TCD for the analysis of gaseous products CO, N₂, CO₂, and CH₄, while a Porapak-Qs column with a flame ionization detector (FID) was employed for the analysis of light hydrocarbons (C₁-C₄). Wax and liquid products were not analyzed, but were weighed. The conversion of CO and selectivity of different products were calculated according to the following equations:

Conversion of CO (%) = $\frac{n_{\text{CO,inlet}} - n_{\text{CO,outlet}}}{n_{\text{CO,inlet}}} \times 100\%$

Selectivity to CO₂ (%)
$$\frac{n_{CO_2, produced}}{n_{CO, inlet} - n_{CO, outlet}} \times 100\%$$

Selectivity to CH₄ (%) =
$$\frac{n_{CH_4, produced}}{n_{CO,inlet} - n_{CO,outlet} - n_{CO_2, produced}} \times 100\%$$

Selectivity to $C_2 \sim C_4$ (%)

$$=\frac{n_{C_2\sim C_4, \text{produced}}}{n_{\text{CO,inlet}}-n_{\text{CO,outlet}}-n_{\text{CO}_2, \text{produced}}}\times 100\%$$

Selectivity to C_5^+ (%) = $1 - S_{CH_4} - S_{C_2} - S_{C_3} - S_{C_4}$

3. Results and discussion

3.1. Catalytic performance

Table 1 shows the results of FTS for Co/SiO₂ catalysts with different cobalt loadings. With the increase in cobalt loading from 20% to 80%, the conversion of CO increased greatly from 7% to 100% at 483 K and 2 MPa while the selectivity to CO₂ decreased from 6.2% to 2.4%. The selectivity to C_5^+ was maintained around 83–90% with the increased loading of Co. The activity of 80%Co/SiO₂ was particularly high, since the conversion of CO almost reached 100% even at 473 K, with low selectivity to CO₂ (1.8%) and high selectivity to C_5^+ (89%).

Different amounts of ZrO₂ were added to the 80%Co/SiO₂ by the co-precipitation method. The FTS reactions were performed at 463 K and 2 MPa for the 80%Co-ZrO₂/SiO₂ catalysts. The results are summarized in Table 2. It is seen that the 80%Co/ZrO₂ exhibited 28.9% convention of CO and 86.8% selectivity to C_5^+ , respectively; both were lower than for 80%Co/SiO₂ (79.5% and 91.5%, respectively). Thus, the activity of 80%Co/ZrO₂ was quite low for FTS. However, addition of ZrO₂ as a promoter into the 80%Co/SiO₂ made a great difference. The data in Table 2 show that with the increase in ZrO₂ from 0% to 8%, the conversion of CO increased from 79.5% to 92%. Meanwhile, the selectivity to $C_5^{\scriptscriptstyle +}$ was increased from 91% to 95% with the decreased selectivity to CH₄. However, excessive addition of ZrO₂ (such as 12%ZrO₂) decreased the conversion of CO and selectivity to C_5^+ . In fact, the 80%Co-12%ZrO₂/SiO₂ showed some behavior of the 80%Co/ZrO₂ for FTS reactions, since only 8% SiO₂ was contained in it. Thus, the addition of the proper amount

Table 1

Catalytic performance of Co/SiO₂ catalysts with different cobalt loadings in FTS reactions (P = 2 MPa and GHSV = 500 ml/(g_{catal} h)).

Catalyst	T (K)	Conversion (%)	Selectivity (%)			
			CO ₂	CH_4	C ₂ -C ₄	C_5^+
20%Co/SiO ₂	483	7.0	6.2	9.2	1.3	89.5
40%Co/SiO ₂	483	45.7	8.1	7.1	7.0	85.9
60%Co/SiO ₂	473	83.2	2.6	9.7	3.4	86.9
	483	99.2	5.7	10.0	2.8	87.2
80%Co/SiO ₂	473	99.3	1.8	8.4	2.7	88.9
	483	100	2.4	13.1	3.5	83.4

Table 2

Catalytic performance of 80%Co–ZrO₂/SiO₂ catalysts with different ZrO₂ loadings for the FTS reactions (P = 2 MPa, GHSV = 500 ml/(g_{catal} h), and T = 463 K).

Catalyst	Conversion (%)	Select	ivity (%)	' (%)		
		CO ₂	CH_4	C ₂ -C ₄	C_5^+	
80%Co/SiO ₂	79.5	0.2	5.1	3.4	91.5	
80%Co-2%ZrO ₂ /SiO ₂	82.7	2.7	2.7	1.6	95.7	
80%Co-4%ZrO ₂ /SiO ₂	83.9	1.6	2.9	2.0	95.0	
80%Co-6%ZrO ₂ /SiO ₂	87.4	3.0	2.7	2.4	94.9	
80%Co-8%ZrO ₂ /SiO ₂	91.9	2.7	3.0	2.0	95.0	
80%Co-12%ZrO ₂ /SiO ₂	54.3	2.4	6.8	4.0	89.2	
80%Co/ZrO ₂	28.9	0	9.4	3.8	86.8	

of ZrO_2 (e.g., 8%) promoted the conversion of CO and enhanced the selectivity to C_5^+ for FTS over the Co– ZrO_2/SiO_2 catalysts.

Based on the above results, we selected four catalysts (80%Co/SiO₂, 80%Co-4%ZrO₂/SiO₂, 80%Co-8%ZrO₂/SiO₂, and 80%Co/ZrO₂) for further studies to understand the effect of ZrO₂ on the surface properties of Co/SiO₂ catalysts.

3.2. Textural and structural properties of catalysts

Table 3 shows the surface areas and pore parameters for the four selected catalysts ($80\%Co/SiO_2$, $80\%Co-4\%ZrO_2/SiO_2$, $80\%Co-8\%ZrO_2/SiO_2$, and $80\%Co/ZrO_2$) after the FTS reactions. The data showed that the $80\%Co/SiO_2$ possessed higher surface area, but smaller pore size, than the $80\%Co/ZrO_2$. Addition of ZrO_2 decreased the surface area, but increased the pore size. Thus, the pore parameters (in terms of surface area and pore size) of $80\%Co-ZrO_2/SiO_2$ were similar to those of $80\%Co/ZrO_2$. The increase in the pore size upon the addition of ZrO_2 might favor the diffusion of CO and H₂ in pores filled with liquid products as well as the diffusion of heavy hydrocarbons out of catalyst pores [2,31].

Because of the high activity and C_5^+ selectivity of these catalysts, the pores were usually filled with liquid products, and thus reduced cobalt species were more or less protected from oxidation when they were exposed to air. Fig. 1 shows the XRD patterns for the catalysts after FTS reactions. Two diffraction peaks at 21.3° and 23.7° are clearly seen for wax in the catalysts. A diffraction peak at 44.4° for metallic Co was observed for all the catalysts. The width of this diffraction peak was used to estimate the average sizes of supported cobalt particles according to the Scherrer equation (see Table 4). The cobalt particle sizes in the 80%Co/SiO₂ and 80%Co/ZrO₂ were found to be about 16 and 18 nm, respectively, while they were about 10 nm in the two Co-ZrO₂/SiO₂ catalysts. Thus, the addition of ZrO_2 improved the dispersion of Co on SiO_2 . XRD results indicated that cobalt existed mainly as Co₃O₄ before the reduction (data not given). Only traces of Co₃O₄ were observed in the catalysts after the FTS reactions, which might be formed from the oxidation of some metallic Co in air. A diffraction peak

Table 3

Texture properties of selected catalysts after FTS reactions at 463 K.

Catalyst	BET area (m²/g)	Pore volume (cm ³ /g)	Average pore diameter (nm)
80%Co/SiO ₂	81	0.4	11.7
80%Co-4%ZrO ₂ /SiO ₂	33	0.2	17.4
80%Co-8%ZrO ₂ /SiO ₂	38	0.3	19.4
80%Co/ZrO ₂	36	0.2	21.1

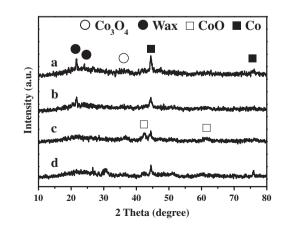


Fig. 1. XRD patterns of $80\%Co/SiO_2$ (a), $80\%Co-4\%ZrO_2/SiO_2$ (b), $80\%Co-8\%ZrO_2/SiO_2$ (c), and $80\%Co/ZrO_2$ (d) after FTS reactions at 463 K.

Catalyst	Adsorption	Adsorption (µmol/g)		Red. ^b (%)	Diam. of Co ^c (nm) by		
	H ₂	02			XRD	H ₂ ads.	TEM
80%Co/SiO ₂	80	5184	2	57	16	46.5	48
80%Co-4%ZrO ₂ /SiO ₂	164	4059	5	44	11	17.9	25
80%Co-8%ZrO ₂ /SiO ₂	183	4212	6	46	10	16.4	20
80%Co/ZrO ₂	97	6210	2	68	18	46.4	Hard to judge

Table 4	
---------	--

Results of chemisorption of H ₂ and O ₂ on the selected	catalusts reduced at 772 V with the size	a of supported Co particles determined	and by different methods
Results of chemisor duoif of π_2 and σ_2 off the selected	I CALAIVSUS TEUUCEU AL 775 K WILII LITE SIZE	s of subbolled to ballicles determin	ieu by unierent methous.

^a Dis. = dispersion.

^b Red. = reducibility.

^c Diam. = diameter.

at 42.4° for CoO was also observed for the 80%Co-8%ZrO₂/SiO₂ and 80%Co/ZrO₂, which might be due to the incomplete reduction of cobalt species in the catalysts. In fact, O₂ adsorption showed that only part of the supported cobalt was reduced to the metallic state.

TEM images of the four selected catalysts after FTS reactions are shown in Fig. 2. Small dispersed cobalt particles were observed in the 80%Co/SiO₂, with some large ones (see Fig. 2a), and the average size of the cobalt particles was estimated to be about 48 nm for the catalyst. Addition of 8%ZrO₂ changed the size distribution of cobalt particles and the sizes of cobalt particles became even (see Fig. 2c). The average size of cobalt particles was then estimated to be about 20 nm for the 80%Co-8%ZrO₂/SiO₂, close to that determined by H₂ adsorption (16.4 nm). Addition of 4%ZrO₂ led to a similar change in the size distribution of cobalt particles in 80%Co-4%ZrO₂/SiO₂ (see Fig. 2b), but the sizes of cobalt particles were not as even as in the 80%Co-8%ZrO₂/SiO₂. The average size of cobalt particles was estimated to be about 25 nm for the 80%Co-4%ZrO₂/SiO₂. No clear cobalt particles could be observed in the 80%Co/ZrO₂ (Fig. 2d), and thus the average particle size could not be estimated from its TEM image.

The number of surface cobalt sites could be titrated by the adsorption of H_2 at 423 K, according to which the average particle sizes of cobalt could be calculated. Table 4 summarizes the sizes of

cobalt particles determined by XRD, TEM, and H_2 adsorption. The inconsistent results seem to indicate the limitations of different methods for the determination of particle sizes of Co [16]. However, the cobalt particle sizes in these catalysts determined by TEM and H_2 adsorption were quite close. Since only certain crystal faces of cobalt were collected by XRD, the average sizes of cobalt particles estimated by the Scherrer equation might be smaller.

3.3. Reducibility and dispersion of supported cobalt

Fig. 3 shows the TPR profiles for the four catalysts. Two main reduction peaks were observed for all four catalysts, which might be attributed to sequential reduction from Co_3O_4 to CoO and then to Co [11,12,32]. Thus, the addition of ZrO_2 did not change the reduction sequence of cobalt species. However, the second TPR peak seemed to shift to higher temperatures upon the addition of ZrO_2 , indicating that the presence of ZrO_2 increased the interaction of cobalt species with the support.

The adsorption of H_2 and O_2 onto the reduced catalysts was carried out at 423 and 673 K, respectively, from which the dispersion and reducibility of supported cobalt could be derived. Table 4 summarizes the information obtained by the adsorption of H_2 and O_2 . The data in Table 4 showed that the H_2 uptake increased from

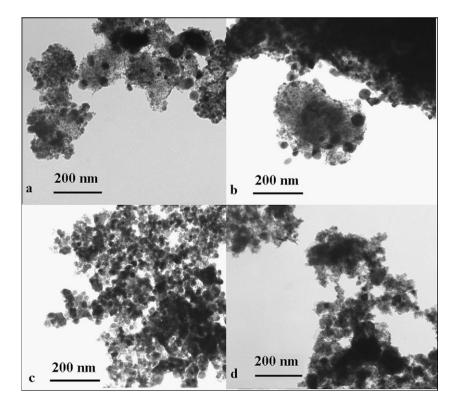


Fig. 2. TEM images of 80%Co/SiO₂ (a), 80%Co-4%ZrO₂/SiO₂ (b), 80%Co-8%ZrO₂/SiO₂ (c), and 80%Co/ZrO₂ (d) after FTS reactions at 463 K.

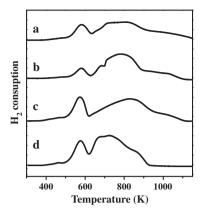
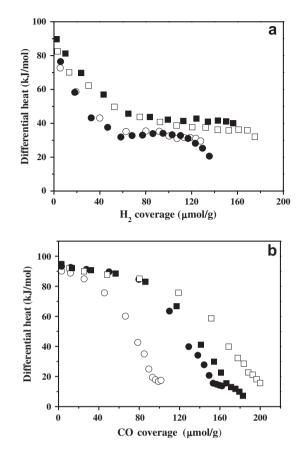


Fig. 3. TPR profiles of 80%Co/SiO₂ (a), 80%Co-4%ZrO₂/SiO₂ (b), 80%Co-8%ZrO₂/SiO₂ (c), and 80%Co/ZrO₂ (d) dried at 393 K.


80 μ mol/g for the 80%Co/SiO₂ to 183 μ mol/g for the 80%Co-8%ZrO₂/SiO₂, corresponding to the increase in cobalt dispersion from 2% to 6%. Meanwhile, the oxygen uptake was decreased, corresponding to the decrease in reduction degree (reducibility) from 57% to 46%. Thus, the addition of ZrO₂ increased the dispersion, while it decreased the reducibility of cobalt supported on SiO₂, consistent with the results of TEM and TPR. However, the increase in dispersion was much greater than the decrease in reducibility for supported Co, so that the number of active surface Co atoms was significantly increased upon the addition of ZrO₂.

3.4. Microcalorimetric adsorption of H₂ and CO

Apparently, the adsorption of CO and H₂ is important for FTS reactions. Thus, microcalorimetric adsorption of H₂ and CO onto the four selected catalysts was performed. Fig. 4a shows the results for microcalorimetric adsorption of H₂ at 423 K for the catalysts. The initial heat was about 73 kJ/mol for H₂ adsorption onto the 80%Co/SiO₂, which was increased to 83 kJ/mol when 8%ZrO₂ was added. The initial heat was about 90 kJ/mol for H₂ adsorption onto the 80%Co/ZrO₂, indicating that the Co–H bond was strengthened with the addition of ZrO₂. The uptake of H₂ was also increased upon the addition of ZrO₂.

Fig. 4b shows the results of microcalorimetric adsorption of CO at 298 K for the catalysts. The initial heat was about 90 kJ/mol for the adsorption of CO onto the 80%Co/SiO₂, which was increased to 93 kJ/mol when 8%ZrO₂ was added. The initial heat was also about 93 kJ/mol for CO adsorption onto the 80%Co/ZrO₂. The uptake of CO increased significantly from 101 µmol/g on the 80%Co/SiO₂ to 200 µmol/g on the 80%Co-8%ZrO₂/SiO₂.

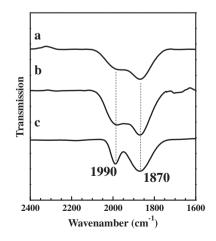

These results showed that the uptake for the adsorption of H₂ and CO onto the supported cobalt was increased upon the addition of ZrO₂. However, the increase in uptake upon the addition of ZrO₂ was different for the adsorption of H₂ and CO, resulting in a change in the CO/H ratio adsorbed onto cobalt. The CO/H ratio was about 0.38 for the 80%Co/SiO₂, while it increased to about 0.56 on the 80%Co/ZrO2 and Co-ZrO2/SiO2 catalysts, indicating that the addition of ZrO₂ enhanced the adsorption of CO more than that of H₂. CO could be adsorbed onto cobalt in linear or bridged forms. Thus, the adsorbed CO/H ratio should be between 0.5 (for bridged adsorption of CO) and 1 (for linear adsorption of CO). The CO/H ratio close to 0.5 suggested that CO was mainly adsorbed in bridged form on the catalysts. This was confirmed by the IR spectra for the adsorbed CO on the 80%Co/SiO₂, 80%Co-8%ZrO₂/SiO₂, and 80%Co/ ZrO₂, as shown in Fig. 5. Two broad bands around 1870 and 1990 $\rm cm^{-1}$ were observed for the adsorption of CO on the catalysts,

Fig. 4. Differential heat vs. coverage for the adsorption of H₂ at 423 K (a) and CO at 298 K (b) over 80%Co/SiO₂ (\bigcirc), 80%Co-4%ZrO₂/SiO₂ (\bigcirc), 80%Co-8%ZrO₂/SiO₂ (\square), and 80%Co/ZrO₂ (\blacksquare).

which can be attributed to the bridged [32-34] and linear adsorbed CO [33,35,36], respectively. Obviously, the band of bridged species (1870 cm^{-1}) was significantly more intensive than that of linear species (1990 cm^{-1}).

Since the addition of ZrO_2 enhanced the adsorption of H_2 and CO onto the surface of Co/SiO_2 in terms of both initial heat and uptake, the addition of ZrO_2 significantly enhanced the conversion of CO and selectivity to C_5^+ on the 80%Co– ZrO_2/SiO_2 catalysts for FTS reactions.

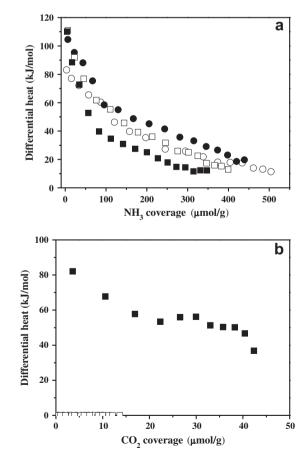


Fig. 5. Infrared spectra for the adsorption of CO at 303 K onto 80%Co/SiO₂ (a), 80%Co-8%ZrO₂/SiO₂ (b), and 80%Co/ZrO₂ (c). The catalysts were reduced and evacuated at 773 K before the adsorptions.

3.5. Surface acidic and basic properties

Previous studies revealed that the surface acid–base properties affected the activity and selectivity of FTS reactions significantly [24,37–39]. Cobalt oxides may interact strongly with acidic supports, leading to lowered reducibility of supported cobalt and thus low FTS activities. In addition, some acid-catalyzed reactions such as oligomerization, isomerization, and cracking might occur on strongly acidic sites, leading to coke deposition and inhibition of chain propagation of hydrocarbons [40,41]. On the other hand, the FTS activities of cobalt catalysts were significantly decreased when basic promoters such as K and Mg were added [10,24,42]. Thus, special attention should be paid to the change in surface acidic and basic properties of Co/SiO₂ catalysts upon the addition of ZrO₂.

Microcalorimetric adsorption of NH₃ and CO₂ was used to probe the surface acid–base properties of catalysts. Fig. 6a shows the results for the adsorption of ammonia at 423 K onto the catalysts reduced and evacuated at 773 K. The initial heat and uptake were measured to be about 83 kJ/mol and 500 µmol/g, respectively, on the 80%Co/SiO₂, while they were 111 kJ/mol and 350 µmol/g, respectively, on the 80%Co/ZrO₂, for the adsorption of ammonia. The higher initial heat indicated stronger surface acidity on 80%Co/ZrO₂ than on 80%Co/SiO₂. The lower uptake of ammonia on 80%Co/ZrO₂ might be due to the lower surface area of 80%Co/ ZrO₂ than of 80%Co/SiO₂. The addition of ZrO₂ increased the initial heat of ammonia adsorption, indicating increased surface acidity of Co–ZrO₂/SiO₂ when compared to the Co/SiO₂. However, the surface

Fig. 6. Differential heat vs. coverage for NH₃ (a) and CO₂ (b) adsorption over 80%Co/SiO₂ (\bigcirc), 80%Co-4%ZrO₂/SiO₂ (\blacksquare), 80%Co-8%ZrO₂/SiO₂ (\square), and 80%Co/ZrO₂ (\blacksquare) reduced at 773 K. The microcalorimetric adsorption measurements were performed at 423 K.

acidity of the 80%Co/ZrO₂ did not seem to be strong enough to catalyze the cracking reactions of heavy hydrocarbons.

The results of microcalorimetric adsorption of CO₂ at 423 K on the reduced catalysts are shown in Fig. 6b. The initial heat and uptake were measured to be about 82 kJ/mol and 42 μ mol/g, respectively, for the adsorption of CO₂ onto the 80%Co/ZrO₂. Thus, the 80%Co/ZrO₂ possessed some surface basicity. Thus, the surface of Co/ZrO₂ was both acidic and basic owing to the amphoteric properties of ZrO₂. Surprisingly, the uptake was very low and no heat was measured for the adsorption of CO₂ onto the 80%Co–8%ZrO₂/ SiO₂, indicating that the 80%Co–ZrO₂/SiO₂ catalysts essentially did not possess any surface basicity. Bouarab et al. [43] and López et al. [44] found that the addition of MgO increased the surface basicity of SiO₂-supported metal catalysts, and the increase in surface basicity was unfavorable for the FTS reactions [10,24,42]. Thus, ZrO₂ seemed a unique promoter that increased the surface acidity of Co/SiO₂ catalysts without affecting their surface basicity.

3.6. Sequential adsorption studies

3.6.1. Sequential adsorption of H₂ and CO

Studies showed that the adsorption of H₂ on cobalt was activated [28,29,45] and thus the heat of adsorption of H₂ was affected by the adsorption temperature. Fig. 7 shows the effect of temperature on the heat of H₂ adsorption on the 80%Co/SiO₂ and 80%Co-8%ZrO₂/SiO₂ catalysts. The initial heat was about 57 and 73 kJ/ mol for the adsorption of H₂ on the 80%Co/SiO₂ at 303 and 423 K, respectively. Greater initial heat was generated when the adsorption was performed at a higher temperature on the same catalyst. indicating that the adsorption of H₂ on cobalt needs activation energy. Surprisingly, the initial heat (70 kJ/mol) and uptake $(247 \mu mol/g)$ were significantly increased for the adsorption of H₂ onto the 80%Co-8%ZrO₂/SiO₂ at 303 K. The initial heat (70 kJ/ mol) for the adsorption of H₂ at 303 K onto the 80%Co-8%ZrO₂/ SiO_2 was close to that (73 kJ/mol) for the adsorption of H₂ at 423 K onto the 80%Co/SiO₂, indicating that ZrO₂ promoted the dissociative adsorption of H₂ on the cobalt surface (i.e., lowered the activation energy for the adsorption of H₂ on Co). When H₂ was adsorbed at 423 K onto the 80%Co-8%ZrO₂/SiO₂, the initial heat was further increased to 83 kJ/mol, while the uptake of H₂ was decreased from 247 to 175 µmol/g.

After the adsorption of H₂ at 303 and 423 K, respectively, onto the 80%Co/SiO₂ and 80%Co-8%ZrO₂/SiO₂, the catalysts were evacuated at 303 K and the adsorption of CO was performed at 303 K. Fig. 8 shows the results. Generally, the desorption temperature (T_{des}) for the absorbed molecules was related to the adsorption

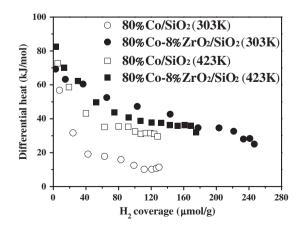
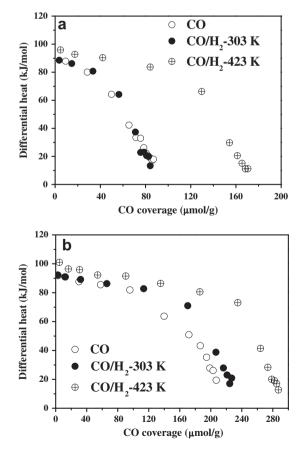



Fig. 7. Differential heat vs. coverage for H_2 adsorption over 80%Co/SiO₂ and 80%Co-8%ZrO₂/SiO₂ at 303 and 423 K, respectively.

heat (ΔH_{ads}) of the adsorbed molecules by the equation $T_{des} = 4\Delta H_{ads}$, which stated that adsorbed molecules with adsorption heat lower than ΔH_{ads} could be desorbed at $T_{des} = 4\Delta H_{ads}$ [46,47]. Accordingly, the H₂ adsorbed onto the 80%Co/SiO₂ at 303 K (with the initial heat of 57 kJ/mol) might be almost completely desorbed when evacuating at 303 K, and those adsorbed on the 80%Co-8%ZrO₂/SiO₂ at 423 K (with the initial heat of 83 kJ/mol) could not be completely desorbed at 303 K.

Fig. 8a shows that the initial heat and coverage for the adsorption of CO on the clean 80%Co/SiO₂ at 303 K were about 90 kJ/mol and 87 μ mol/g, respectively. After the adsorption of H₂ at 303 K followed by evacuation at 303 K, the adsorption of CO was performed again on the 80%Co/SiO₂, and initial heat and coverage similar to those for the clean catalyst were measured, indicating that all adsorbed H₂ was evacuated before the adsorption of CO in this case. However, after adsorption of H₂ at 423 K followed by evacuation at 303 K, the adsorption of CO onto the (H-preadsorbed) 80%Co/SiO₂ generated greater initial heat (96 kJ/mol) with greater coverage (171 μ mol/g), indicating that the presence of preadsorbed H significantly enhanced the adsorption of CO onto the surface of cobalt. Since H is a strong electron donor [48], the presence of H increased the electron density in d orbitals of surface cobalt and thus increased the electron charges back-donated from d orbitals to the anti-bonding orbitals of adsorbed CO [49]. In this way, the Co-CO bonding was enhanced and more heat was generated for the adsorption of CO onto the Co surface with preadsorbed H atoms.

Fig. 8b shows the effect of preadsorbed H on the adsorption of CO onto the 80%CO-8%ZrO₂/SiO₂. Since the adsorption of H₂ was promoted by the presence of ZrO₂, some adsorbed H might remain

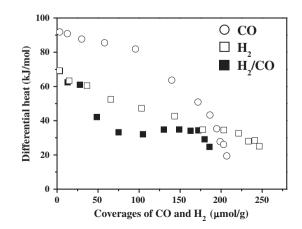
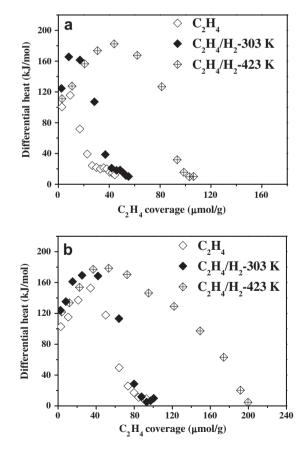


Fig. 8. Differential heat vs. coverage for CO adsorption onto clean and H_2 -preadsorbed (CO/H₂) 80%Co/SiO₂ (a) and 80%Co-8%ZrO₂/SiO₂ (b) catalysts. The catalysts were reduced and evacuated at 773 K. After the adsorption of H₂ at 303 or 423 K and evacuation at 303 K, the microcalorimetric adsorption of CO was performed at 303 K (CO/H₂-303 K and CO/H₂-423 K).

on the surface of 80%Co-8%ZrO₂/SiO₂ after the adsorption of H₂ and then evacuation at 303 K. Accordingly, the heat and coverage of CO were higher (though not much, indicating that only a little H remained) on it than on the clean 80%Co-8%ZrO₂/SiO₂. After the adsorption of H₂ at 423 K followed by evacuation at 303 K, the adsorption of CO onto the H-preadsorbed 80%Co-8%ZrO₂/SiO₂ generated greater initial heat (101 kJ/mol) with greater coverage (287 µmol/g), indicating that the presence of preadsorbed H significantly enhanced the adsorption of CO on the surface of cobalt promoted by ZrO₂.

Since ZrO₂ promoted the adsorption of H₂ onto the surface of cobalt (both the initial heat and coverage of H₂ were increased), 80%Co-8%ZrO₂/SiO₂ was covered with more H atoms than 80%Co/SiO₂, after adsorption of H₂ and evacuation at 303 K. Accordingly, the adsorption of CO was more enhanced (in terms of uptake and surface bonding) on the H-preadsorbed surface of cobalt promoted by ZrO₂. Thus, ZrO₂ promoted not only the adsorption of H₂ and CO individually onto the clean surface of cobalt, but also the adsorption of CO particularly onto the H-preadsorbed surface of cobalt. While the initial heat and coverage were about 90 kJ/mol and 87 µmol/g, respectively, for the adsorption of CO at 303 K onto the clean 80%Co/SiO₂, they were found to be about 101 kJ/mol and 287 µmol/g, respectively, for the adsorption of CO at the same temperature onto the H-preadsorbed 80%Co-8%ZrO₂/SiO₂. Such a great difference in the adsorption of CO might account for the greatly positive effect of ZrO₂ as a promoter for Co/SiO₂ catalysts in the FTS reactions.

At 303 K, the heat of H₂ adsorption onto the 80%Co/SiO₂ was low (57 kJ/mol). The heat was significantly increased to 70 kJ/mol for the adsorption of H₂ at 303 K onto the 80%Co-8%ZrO₂/SiO₂. Thus, the effect of preadsorbed CO on the adsorption of H₂ onto 80%Co-8%ZrO₂/SiO₂ was more meaningful. The results are shown in Fig. 9. The initial heat and coverage were measured to be about 92 kJ/mol and 207 µmol/g, respectively, for the adsorption of CO at 303 K onto 80%Co-8%ZrO₂/SiO₂. After evacuation at 303 K, a large quantity of CO (more than 100 µmol/g) might remain on the surface of 80%Co-8%ZrO₂/SiO₂, which would definitely affect the adsorption of H₂. The initial heat and coverage were measured to be about 70 kJ/mol and 247 µmol/g, respectively, for the adsorption of H₂ onto the clean 80%Co-8%ZrO₂/SiO₂, while they were about 70 kJ/mol and 175 µmol/g, respectively, for the adsorption of H₂ onto the CO-preadsorbed 80%Co-8%ZrO₂/SiO₂. In addition, the heat was significantly decreased at coverage higher than $38 \,\mu mol/g$ for the adsorption of H₂ onto the CO-preadsorbed 80%Co-8%ZrO₂/SiO₂. Thus, the presence of CO inhibited the adsorption of H₂ on the surface of cobalt promoted by ZrO₂. Without the


Fig. 9. Differential heat vs. coverage for H_2 adsorption onto clean and COpreadsorbed (H_2 /CO) 80%Co-8%ZrO₂/SiO₂. The catalyst was reduced and evacuated at 773 K. The microcalorimetric adsorption of CO and H_2 was performed at 303 K.

addition of ZrO_2 , this inhibition effect was more profound for the adsorption of H_2 on the CO-preadsorbed $80\%Co/SiO_2$ (data not shown).

3.6.2. Sequential adsorption of H_2 and C_2H_4

Fig. 10 shows the results of microcalorimetric adsorption of C_2H_4 onto the clean and H-preadsorbed catalysts. The heat vs. coverage curve for the adsorption of C_2H_4 onto the surface of cobalt displayed a maximum due to the formation of surface ethylidyne species (CH₃–C \equiv) and H and the subsequent hydrogenation of C_2H_4 to ethane that was released to the gas phase [50,51]. Because of the generation of ethane during the adsorption of C_2H_4 , the amount of C_2H_4 adsorbed as calculated volumetrically and thus the differential heat calculated by the heat released divided by the amount of C_2H_4 adsorbed were not accurate. In addition, the heat released due to the hydrogenation of ethylene also led to the overcalculation of adsorption heat. Thus, the heat and coverage presented in Fig. 10 for the adsorption of ethylene were nominal. However, the changes in heat and coverage for the adsorption of ethylene on the different catalysts were apparent.

Fig. 10a shows that the nominal initial heat and coverage were about 100 kJ/mol and 45 μ mol/g, respectively, for the adsorption of C₂H₄ onto the clean 80%Co/SiO₂. The maximum on the heat vs. coverage curve was significantly enhanced for the adsorption of C₂H₄ on the H-preadsorbed 80%Co/SiO₂ with the preadsorption of H₂ at 303 K. The nominal heat and coverage were further enhanced for the adsorption of C₂H₄ on the H-preadsorbed 80%Co/SiO₂ with the preadsorbed 80%Co/SiO₂ with the preadsorbed for the adsorption of H₂ at 423 K, indicating that the preadsorbed

Fig. 10. Differential heat vs. coverage for ethylene adsorption onto clean and H_2 -preadsorbed (C_2H_4/H_2) 80%Co/SiO₂ (a) and 80%Co-8%ZrO₂/SiO₂ (b) catalysts. The catalysts were reduced and evacuated at 773 K. After the adsorption of H_2 at 303 or 423 K and evacuation at 303 K, the microcalorimetric adsorption of ethylene was performed at 303 K (C_2H_4/H_2 -303 K and C_2H_4/H_2 -423 K).

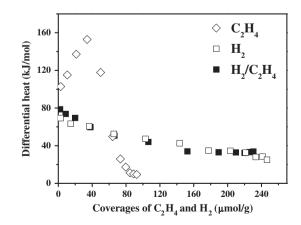
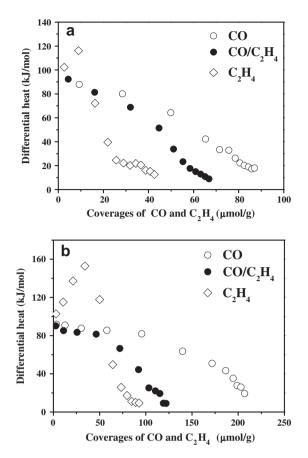

H promoted the dissociative adsorption of ethylene and the subsequent hydrogenation of adsorbed C_2H_4 .

Fig. 10b shows that the nominal initial heat and coverage were about 100 kJ/mol and 90 µmol/g, respectively, for the adsorption of C_2H_4 onto the clean 80%Co-8%ZrO₂/SiO₂. When compared to the adsorption of C₂H₄ on the clean 80%Co/SiO₂, the dissociative adsorption and hydrogenation of ethylene were significantly enhanced with the presence of ZrO₂. The heat vs. coverage curves were similar for the adsorption of C₂H₄ onto the clean and Hpreadsorbed 80%Co-8%ZrO₂/SiO₂ with the preadsorption of H₂ at 303 K. However, the nominal heat and coverage were greatly enhanced for the adsorption of C2H4 onto the H-preadsorbed 80%Co-8%ZrO₂/SiO₂ with the preadsorption of H₂ at 423 K. Comparing the results of adsorption of C_2H_4 onto the 80%Co/SiO₂ and 80%Co-8%ZrO₂/SiO₂ with preadsorbed H_2 at 423 K, it was apparent that the H-preadsorbed surface of cobalt in 80%Co-8%ZrO₂/SiO₂ was much more active than that in 80%Co/SiO₂ for the adsorption and hydrogenation of ethylene.


Fig. 11 shows the effect of preadsorbed C_2H_4 on the adsorption of H_2 onto the 80%Co-8%ZrO₂/SiO₂. The nominal initial heat and coverage were measured to be about 100 kJ/mol and 90 µmol/g, respectively, for the adsorption of C_2H_4 at 303 K onto the clean 80%Co-8%ZrO₂/SiO₂. After evacuation at 303 K, some ethylidyne and adsorbed ethylene must remain on the surface of 80%Co-8%ZrO₂/SiO₂. However, the presence of surface species from the adsorption of C_2H_4 at 303 K did not seem to affect the adsorption of H_2 , since similar heat vs. coverage curves were obtained for the adsorption of H_2 onto the clean and C_2H_4 -preadsorbed 80%Co-8%ZrO₂/SiO₂, as can be seen clearly in Fig. 11.

3.6.3. Sequential adsorption of CO and C_2H_4

Fig. 12 shows the results of microcalorimetric adsorption of CO on the clean and C_2H_4 -preadsorbed catalysts. Fig. 12a shows that the initial heat and coverage for the adsorption of CO onto the clean 80%Co/SiO₂ at 303 K were about 90 kJ/mol and 87 µmol/g, respectively. The initial heat was almost unchanged, while the coverage of CO was decreased to about 67 µmol/g, when CO was adsorbed onto the 80%Co/SiO₂ with C_2H_4 preadsorbed. Similarly, the initial heat and coverage for the adsorption of CO onto the clean 80%Co-8%ZrO₂/SiO₂ at 303 K were about 92 kJ/mol and 207 µmol/g, respectively. Again, the initial heat was almost unchanged, while the coverage of CO was decreased to about 122 µmol/g, when CO was adsorbed onto the 80%Co-8%ZrO₂/SiO₂ with C_2H_4 preadsorbed, as can be seen in Fig. 12b. These results indicated that the surface species such as ethylidyne formed from

Fig. 11. Differential heat vs. coverage for H_2 adsorption onto clean and ethylenepreadsorbed (H_2/C_2H_4) 80%Co-8%ZrO₂/SiO₂. The catalyst was reduced and evacuated at 773 K. The microcalorimetric adsorption of ethylene and H_2 was performed at 303 K.

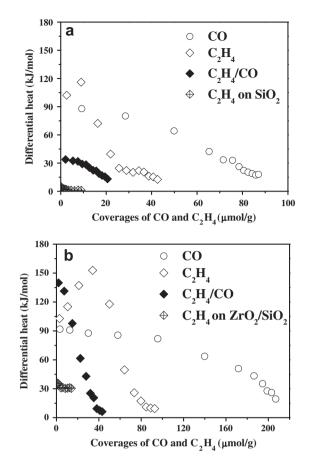


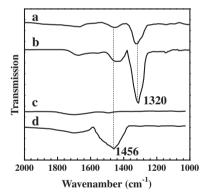
Fig. 12. Differential heats vs. coverage for CO adsorption onto clean and C_2H_4 -preadsorbed (CO/C₂H₄) 80%Co/SiO₂ (a) and 80%Co-8%ZrO₂/SiO₂ (b) catalysts. The catalysts were reduced and evacuated at 773 K. The microcalorimetric adsorption of C_2H_4 and CO was performed at 303 K.

the adsorption of C_2H_4 at 303 K occupied the surface cobalt sites in 80%Co/SiO₂ and 80%Co-8%ZrO₂/SiO₂ for the adsorption of CO.

The effect of preadsorbed CO on the adsorption of C₂H₄ onto the 80%Co/SiO2 and 80%Co-8%ZrO2/SiO2 catalysts was studied and the results are shown in Fig. 13. Fig. 13a shows that the adsorption of C₂H₄ onto SiO₂ was negligible, and thus the possible effect of adsorption of C₂H₄ on the support could be excluded. According to the equation $T_{des} = 4\Delta H_{ads}$, about 30 μ mol/g CO might remain on the surface of 80%Co/SiO₂ after adsorption of CO and then evacuation at 303 K. This was confirmed by the IR spectrum shown in Fig. 5a. Fig. 13a shows that the heat vs. coverage curves for the adsorption of ethylene onto the clean and CO-preadsorbed surfaces of 80%Co/SiO₂ were totally different. Both the initial heat and coverage for the adsorption of C₂H₄ onto the CO-preadsorbed 80%Co/ SiO₂ were significantly decreased, and the heat maximum was no longer present on the heat vs. coverage curve. The initial heat and coverage were measured to be 34 kJ/mol and $21 \mu \text{mol/g}$, respectively, for the adsorption of C₂H₄ onto the CO-preadsorbed 80%Co/SiO₂. The results indicated that the presence of preadsorbed CO inhibited the dissociative adsorption of C₂H₄. Because of the low adsorption heat (≤ 34 kJ/mol), C₂H₄ must be adsorbed molecularly (or π -bonded) on the CO-preadsorbed surface of cobalt in the 80%Co/SiO₂ [50].

Fig. 13b shows that ZrO_2/SiO_2 adsorbed some C_2H_4 with heat lower than 40 kJ/mol. Apparently, this was due to the adsorption of C_2H_4 onto ZrO_2 , since the adsorption of C_2H_4 onto SiO_2 was negligible. Thus, the presence of ZrO_2 might favor the adsorption of C_2H_4 . The adsorption of C_2H_4 onto the clean 80%Co-8%ZrO₂/SiO₂ generated a heat vs. coverage curve with a heat maximum and

Fig. 13. Differential heats vs. coverage for C_2H_4 adsorption onto clean and COpreadsorbed (C_2H_4 /CO) 80%Co/SiO₂ (a) and 80%Co-8%ZrO₂/SiO₂ (b) catalysts. The catalysts were reduced and evacuated at 773 K. The microcalorimetric adsorption of CO and C_2H_4 was performed at 303 K. The adsorption of C_2H_4 onto SiO₂ and ZrO₂/ SiO₂ is also presented for comparison.


nominal initial heat and coverage of about 102 kJ/mol and 93 µmol/g, respectively. On the other hand, the adsorption of C₂H₄ onto the CO-preadsorbed 80%Co-8%ZrO₂/SiO₂ was totally different. According to the equation $T_{des} = 4\Delta H_{ads}$, about 100 μ mol/g CO might remain on the surface of 80%Co-8%ZrO₂/SiO₂ after adsorption of CO (see Fig. 13b) and then evacuation at 303 K. In fact, the IR bands of adsorbed CO on 80%Co-8%ZrO₂/SiO₂ were significantly more intensive than those on 80%Co/SiO₂, as can be seen from Figs. 5a and 5b. As mentioned above, the amount of CO that remained on the 80%Co/SiO₂ was about 30 µmol/g after evacuation at 303 K. The initial heat and coverage were measured to be about 140 kJ/mol and 45 μ mol/g, respectively, for the adsorption of C₂H₄ onto the CO-preadsorbed 80%Co-8%ZrO₂/SiO₂ without a heat maximum. Thus, the presence of preadsorbed CO inhibited the dissociative adsorption of C₂H₄ onto the surface of Co promoted by ZrO₂. Notice the significant difference for the adsorption of C₂H₄ on the CO-preadsorbed 80%Co/SiO2 and 80%Co-8%ZrO2/SiO2. While the initial heat and coverage were 34 kJ/mol and $21 \,\mu\text{mol/g}$, respectively, for the adsorption of C₂H₄ onto the CO-preadsorbed 80%Co/SiO₂, they were 140 kJ/mol and 45 μ mol/g, respectively, for the adsorption of C₂H₄ onto the CO-preadsorbed 80%Co-8%ZrO₂/SiO₂. Thus, the presence of ZrO₂ greatly promoted the adsorption of C₂H₄ onto the CO-preadsorbed cobalt sites. Because of the high initial adsorption heat (140 kJ/mol), C₂H₄ must be adsorbed mainly via di- σ bonding on the CO-preadsorbed surface of cobalt in 80%Co-8%ZrO₂/SiO₂ [50].

IR spectra were collected at 303 K for the adsorption of C_2H_4 onto the clean and CO-preadsorbed 80%Co/SiO₂ and

80%Co-8%ZrO₂/SiO₂ catalysts. Fig. 14 shows the results. A band around 1320 cm^{-1} was observed for the adsorption of C_2H_4 onto the clean 80%Co/SiO₂ and 80%Co-8%ZrO₂/SiO₂, which could be assigned to ethylidyne [50]. The band was more intensive for 80%Co-8%ZrO₂/SiO₂ than for 80%Co/SiO₂, indicating that more C₂H₄ was dissociatively adsorbed on 80%Co-8%ZrO₂/SiO₂ than on 80%Co/ SiO₂. This band disappeared for the adsorption of C₂H₄ onto the CO-preadsorbed 80%Co/SiO₂ and 80%Co-8%ZrO₂/SiO₂, indicating the inhibition of dissociative adsorption of C₂H₄ for the formation of ethylidyne by the presence of adsorbed CO. Instead, a broad band around 1456 cm⁻¹ was clearly seen for the adsorption of C₂H₄ onto the CO-preadsorbed 80%Co-8%ZrO₂/SiO₂, which could be attributed to di- σ -bonded ethylene [50]. This band was absent for the adsorption of C₂H₄ onto the CO-preadsorbed 80%Co/SiO₂. In addition, other bands were hardly observed for the adsorption of C₂H₄ on the CO-preadsorbed 80%Co/SiO₂. Thus, it may be inferred that only π -bonded ethylene species might be weakly adsorbed onto the CO-preadsorbed 80%Co/SiO₂ (with initial heat about 34 kJ/mol), which might be completely desorbed upon evacuation at 303 K. It should be mentioned that there were some di- σ bonded ethylene formed upon the adsorption of C₂H₄ onto clean 80%Co/SiO₂ and 80%Co-8%ZrO₂/SiO₂.

3.6.4. Discussion of the adsorption of CO, H_2 , and C_2H_4 onto cobalt

It is known that hydrogen atoms are adsorbed onto the threefold hollow sites on cobalt surfaces [52,53], while CO molecules are adsorbed in bridged or linear forms onto cobalt. The adsorption of C_2H_4 onto clean cobalt surfaces led to the formation of surface ethylidyne and absorbed H atoms. Ethylene could also be bonded to a metal surface via a π or di- σ bond. These surface species are

Fig. 14. Infrared spectra for the adsorption of ethylene at 303 K onto clean $80\%Co/SiO_2$ (a) and $80\%Co-8\%ZrO_2/SiO_2$ (b) as well as onto CO-preadsorbed (C_2H_4/CO) $80\%Co/SiO_2$ (c) and $80\%Co-8\%ZrO_2/SiO_2$ (d). The catalysts were reduced and evacuated at 773 K before the adsorption.

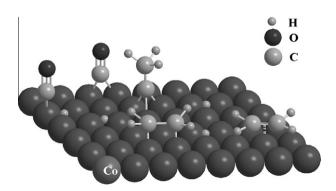


Fig. 15. Schematic diagram for the surface species from the adsorption of CO, H₂, and C_2H_4 onto the cobalt surface.

schematically depicted in Fig. 15. Apparently, the presence of adsorbed H atoms would not affect the adsorption of CO and C_2H_4 geometrically, and vice versa. On the other hand, the adsorption of CO and C_2H_4 would compete for the same surface cobalt sites.

Fig. 15 shows the possible geometric interactions among the adsorbed surface species. The electronic effects among these surface species are much more complicated. The results of sequential adsorption of two probe molecules demonstrate such electronic interactions among the adsorbed species. For example, preadsorbed H atoms promote the adsorption of CO onto cobalt surface by enhancing the Co-CO bonding and CO coverage, while the preadsorbed CO inhibits the dissociative adsorption of ethylene. Adsorbed ethylene might be the basic unit for the propagation of carbon chains in FTS reactions. Thus, the dissociative adsorption of ethylene to form ethylidyne species was not desirable, since it might be the precursor of coke deposits. The results of sequential adsorption of CO and C₂H₄ suggested that the dissociative adsorption of ethylene would not occur on cobalt surfaces with preadsorbed CO. In addition, the nondissociative adsorption of C₂H₄ was significantly promoted by the presence of ZrO₂. In fact, while ethylene molecules might be adsorbed via π bonds onto the COpreadsorbed 80%Co/SiO₂, they might be adsorbed via di- σ bonds onto the CO-preadsorbed 80%Co-ZrO₂/SiO₂. The di- σ -bonded C_2H_4 must be more easily activated than the π -bonded ones when they are incorporated into carbon chains during the chain propagation. That might be why the presence of ZrO₂ promoted selectivity to C_5^+ during the FTS reactions over Co/SiO₂ catalysts.

Thus, the presence of ZrO_2 in 80%Co– ZrO_2 /SiO₂ performed multiple functions. It improved the dispersion of cobalt and thus increased the catalytic activity for FTS reactions. It promoted the adsorption of CO and H₂ and changed the adsorption state of C₂H₄ on cobalt surfaces with preadsorbed CO. All these functions were positive for the FTS reactions in terms of CO conversion and C₅⁺ selectivity.

4. Conclusions

Adsorbed H, CO, and methylene (or molecularly adsorbed ethylene) on Co are usually taken as the primary surface species that react to form heavy hydrocarbons during FTS. Microcalorimetric adsorption and infrared spectroscopy were used in this work to determine the energetic interactions of these species with Co surfaces and their surface molecular structures, which were found to be affected by the presence of ZrO_2 as a promoter in Co/SiO₂. Specifically, ZrO_2 was found to promote the adsorption of H_2 (by enhancing the strength of Co-H bond) and CO (by increasing the uptake) on Co. In addition, it affected the co-adsorption of H_2 , CO, and ethylene on Co. For example, the preadsorbed H significantly promoted the adsorption of CO and ethylene onto Co, and this promotion effect was enhanced by the presence of ZrO₂. While the adsorption of ethylene onto clean Co led to the formation of surface ethylidyne, which might cause coke deposition, such dissociative adsorption of ethylene was inhibited on Co when CO was co-adsorbed. In particular, ethylene was found to be mainly adsorbed via π and di- σ bonding on the CO-preadsorbed Co/SiO₂ and Co-ZrO₂/SiO₂, respectively. Such molecularly adsorbed ethylene molecules on Co are expected to favor chain propagation during Fischer-Tropsch synthesis. Thus, the presence of ZrO₂ strengthened the bonding of molecularly adsorbed ethylene and increased its uptake on Co with CO preadsorbed. This might be an important factor in the significantly higher selectivity to C_5^+ of Co/SiO₂ catalysts promoted with ZrO₂ during FTS. Based on the current experimental results, quantum calculations may be used to deepen understanding of the chain initiations and propagations on Co during the Fischer-Tropsch reactions.

Acknowledgments

Financial support from NSFC (20673055 and 21073089), MSTC (2005CB221400), and Jiangsu Province, China (BE2009145), is acknowledged.

References

- [1] E. Iglesia, S.L. Soled, R.A. Fiato, J. Catal. 137 (1992) 212.
- [2] E. Iglesia, Appl. Catal. A 161 (1997) 59.
- [3] B. Ernst, S. Libs, P. Chaumette, A. Kiennemann, Appl. Catal. A 186 (1999) 145.
- [4] I. Puskas, T.H. Fleisch, P.R. Full, J.A. Kaduk, C.L. Marshall, B.L. Meyers, Appl. Catal. A 311 (2006) 146.
- [5] J.M. Jablonski, J. Okal, D. Potoczna-Petru, L. Krajczyk, J. Catal. 220 (2003) 146.
 [6] J.S. Girardon, A.S. Lermontov, L. Gengembre, P.A. Chernavskii, A. Griboval-
- Constant, A.Y. Khodakov, J. Catal. 230 (2005) 339. [7] Ø. Borg, J. Walmsley, R. Dehghan, B. Tanem, E. Blekkan, S. Eri, E. Rytter, A. Holmen, Catal. Lett. 126 (2008) 224.
- [8] S. Krishnamoorthy, M. Tu, M.P. Ojeda, D. Pinna, E. Iglesia, J. Catal. 21 (2002) 422.
- [9] S.L. Soled, E. Iglesia, R.A. Fiato, J.E. Baumgartner, H. Vroman, S. Miseo, Top. Catal. 26 (2003) 101.
- [10] W. Ma, Y. Ding, L. Lin, J. Ind. Eng. Chem. 43 (2004) 2391.
- [11] H. Xiong, Y. Zhang, K. Liew, J. Li, J. Mol. Catal. A 231 (2005) 145.
- [12] D. Song, J. Li, J. Mol. Catal. A 247 (2006) 206.
- [13] H. Zhao, J. Chen, Y. Sun, Stud. Surf. Sci. Catal. 147 (2004) 355.
- [14] A.Y. Khodakov, W. Chu, P. Fongarland, Chem. Rev. 107 (2007) 1692.
- [15] A. Jean-Marie, A. Griboval-Constant, A.Y. Khodakov, F. Diehl, C. R. Chim. 12 (2009) 660.
- [16] A.Y. Khodakov, A. Griboval-Constant, R. Bechara, V.L. Zholobenko, J. Catal. 206 (2002) 230.
- [17] G. Jacobs, T.K. Das, Y. Zhang, J. Li, G. Racoillet, B.H. Davis, Appl. Catal. A 233 (2002) 263.
- [18] C.J. Bertole, C.A. Mims, G. Kiss, J. Catal. 221 (2004) 191.
- [19] H. Xiong, Y. Zhang, K. Liew, J. Li, Fuel Process. Technol. 90 (2009) 237.
- [20] E. van Steen, E.L. Viljoen, J. van de Loosdrecht, M. Claeys, Appl. Catal. A 335 (2008) 56.
- [21] L.B. Shapovalova, G.D. Zakumbaeva, A.A. Zhurtbaeva, Stud. Surf. Sci. Catal. 147 (2004) 373.

- [22] H. Chen, M. Xue, J. Shen, Catal. Lett. 135 (2010) 246.
- [23] S. Hu, M. Xue, H. Chen, J. Shen, Chem. Eng. J. 162 (2010) 372.
- [24] J. Gaube, H.F. Klein, J. Mol. Catal. A 283 (2008) 60.
- [25] W.K. Hall, R.J. Kokes, P.H. Emmett, J. Am. Chem. Soc. 82 (1960) 1027.
- [26] B.H. Davis, Catal. Today 141 (2009) 25.
- [27] E. Iglesia, S.C. Reyes, R.J. Madon, J. Catal. 129 (1991) 238.
- [28] J.M. Zowtiak, C.H. Bartholomew, J. Catal. 83 (1983) 107.
 [29] F. Morales, E. de Smit, F.M.F. de Groot, T. Visser, B.M. Weckhuysen, J. Catal. 246
- (2007) 91.
- [30] R.C. Reuel, C.H. Bartholomew, J. Catal. 85 (1984) 63.
- [31] A.Y. Khodakov, Catal. Today 144 (2009) 251.
- [32] A.A. Khassin, T.M. Yurieva, G.N. Kustova, I.S. Itenberg, M.P. Demeshkina, T.A. Krieger, L.M. Plyasova, G.K. Chermashentseva, V.N. Parmon, J. Mol. Catal. A 168 (2001) 193.
- [33] M.J. Heal, E.C. Leisigang, R.G. Torrington, J. Catal. 51 (1978) 314.
- [34] M.J. Dees, T. Schidi, Y. Iwazawa, V. Ponec, J. Catal. 124 (1990) 530.
- [35] K.R. Mohana, G. Spoto, A. Zecchina, J. Catal. 113 (1988) 466.
- [36] K. Sato, Y. Inoue, I. Kojima, E. Miyajaki, I. Yasumori, J. Chem. Soc. Faraday Trans. I 80 (1984) 841.
- [37] J. Zhang, J. Chen, J. Ren, Y. Sun, Appl. Catal. A 243 (2003) 121.
- [38] S.T. Hussain, M. Mazhar, M.A. Nadeem, J. Nat. Gas Chem. 18 (2009) 187.
- [39] M. Trépanier, A. Tavasoli, A.K. Dalai, N. Abatzoglou, Fuel Process. Technol. 90 (2009) 367.
- [40] G. Calleja, A. De Lucas, R. Van Grieken, Appl. Catal. 68 (1991) 11.
- [41] S. Bessell, Appl. Catal. A 126 (1995) 235.
- [42] Y. Zhang, H. Xiong, K. Liew, J. Li, J. Mol. Catal. A 237 (2005) 172.
- [43] R. Bouarab, O. Akdim, A. Auroux, O. Cherifi, C. Mirodatos, Appl. Catal. A 264 (2004) 161.
- [44] T. López, R. Gomez, M.E. Llanos, E. López-Salinas, Mater. Lett. 38 (1999) 283.
- [45] C.H. Bartholomew, R.J. Farrauto, J. Catal. 45 (1976) 41.
- [46] M. Li, J. Shen, X. Ge, X. Chen, Appl. Catal. A 206 (2001) 161.
- [47] M. Li, J. Shen, J. Catal. 205 (2002) 248.
- [48] Y. Chen, Y. Chen, M. Gong, J. Zhou, Y. Zhang, J. Mol. Catal. China 7 (1993) 285.
- [49] G. Blyholder, J. Phys. Chem. 68 (1964) 2772.
- [50] J. Shen, J.M. Hill, R.M. Watwe, B.E. Spiewak, J.A. Dumesic, J. Phys. Chem. B 103 (1999) 3923.
- [51] M. Li, J. Shen, W. Ji, Thermochim. Acta 345 (2000) 19.
- [52] G.W. Watson, R.P.K. Wells, D.J. Willock, G.J. Hutchings, J. Phys. Chem. B 105 (2001) 4889.
- [53] F. Zaera, Langmuir 12 (1996) 88.